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Abstract
The effective polarization interaction potential between charged and neutral
particles is considered for a partially ionized plasma. This pseudopotential
is deduced taking into account quantum-mechanical effects at short distances
as well as screening effects at large distances. Furthermore, a cutoff radius is
obtained using a modified effective-range theory. Explicit results for parameters
describing the interaction of the atom with charged particles are given.

PACS numbers: 52.20.Hv, 52.27.Gr

1. Introduction

A partially ionized hydrogen plasma (number density of electrons and ions ne = ni =
1021–1024 cm−3, temperature T = 103–106 K) is considered, with a = (3/4πn)1/3 denoting
the average distance between particles, where n = ne + ni . The state of the system depends
greatly on the coupling parameter � = e2/akBT , which describes the ratio of the potential
energy of charged particles’ interaction at an average distance to their thermal energy. The
plasma becomes non-ideal at � > 1. Furthermore, we introduce the density parameter
rS = a/aB (aB is the Bohr radius), which decreases with increasing densities.

To calculate the thermodynamic and transport properties of partially ionized plasmas, we
can use the chemical picture where atoms are considered as new constituents in addition to
free electrons and ions. Therefore, effective potentials have to be introduced for the different
interactions between neutral atoms and charged particles. We will focus on the polarization
potential describing the interaction between charged particles (electrons) and neutrals. In
particular, we consider the inclusion of screening and quantum-mechanical effects into the
polarization potential.
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2. Polarization potential

As well known, at large distances the interaction between an isolated atom and a charged
particle is given by

�0(r) = −e2α

2r4
, (1)

where α is the polarizability of the atom.
However, this potential is not appropriate for dense plasmas. At short distances, it becomes

singular. It has to be modified if r is of the order of the extension of the atom as given by the
Bohr radius aB . According to Buckingham, a cutoff radius r1,B can be introduced leading to
the potential

�B(r) = − e2α

2
(
r2 + r2

1,B

)2 , (2)

with

r4
1,B = αaB

2
. (3)

We obtain a finite value �B(0) = −e2/aB .
At large distances, also a modification is necessary. In dense plasmas, the Coulomb

interaction between charged particles is screened. The well-known Debye formula
(e2/r)exp(−r/rD), with rD =

√
kBT /(4πne2) being the Debye radius, gives an exponential

decrease of the interaction. This leads to the contradiction that the interaction between charged
particles becomes smaller than the polarization potential at large distances. Therefore, we
have to screen also the polarization potential. Redmer et al [1] found the expression

�B,S(r) = − e2α

2
(
r2 + r2

1,B

)2 exp

(
− 2r

rD

) (
1 +

r

rD

)2

. (4)

In our previous paper [2], we proposed a pseudopotential for the interaction between
charged particles and atoms, which also considers the polarization of atom in an external field:

�(r) = − e2α

2r4
(
1 − 4−λ2

/
r2
D

) (e−Br(1 + Br) − e−Ar(1 + Ar))2, (5)

where A2 = (
1 +

√
1 − 4−λ2

/
r2
D

)/
(2−λ2), B2 = (

1 −
√

1 − 4−λ2
/
r2
D

)/
(2−λ2) are coefficients,

−λab = h̄/(2πµabkBT )1/2 is the thermal de Broglie wavelength of electrons.
This effective polarization potential takes into account quantum effects by averaging over

the thermal wavelength. Similar to the Kelbg or Deutsch potential for the interaction between
charged particles, it can be used to perform classical molecular dynamics calculations.

In particular, as for the Buckingham potential (2), the singularity of the simple potential
(1) at r = 0 is removed. A finite value �(0) = −e2α/(8−λ4) is obtained, which differs
from �B(0) for the Buckingham potential. At large distances, for −λ2

/
r2
D � 1 the screening

behaviour is reproduced.
The short-range behaviour of the effective interaction between the atom and an electron

needs more detailed consideration. In principle, we have to consider two possibilities for the
spin orientations of the electrons. If the spins of the free as well as the bound electrons are
parallel, due to the Pauli exclusion principle we have a strong repulsion at short distances.
Therefore, we introduce an effective polarization potential which has a finite cutoff (hard core)
radius. Conventionally, this radius is obtained using a modified effective-range theory. The
detailed description of this theory is beyond the scope of the present work and we just refer
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to original works [3, 4], see also [5]. In the following we will not consider the electron spin
explicitly, which can be understood as performing an averaging over the spin orientations. The
interaction between charges and neutrals has also been considered recently [6]. The concept
of the excluded volume was used to take into account that because of the Pauli blocking a part
of the total volume, which is already occupied by atoms, is not accessible for free electrons.
The smallest distance to which free electrons can approach atoms was estimated within 1 aB

and 2 aB .

3. Cutoff radius

As already noted above, to obtain the effective radius we use the so-called modified effective-
range theory. The interaction potential

V (r) = V1(r) + V2(r) (6)

is represented as a sum of a short-range hard sphere potential V1(r) = ∞ for r < r1, V1(r) = 0
for r > r1, and a polarization potential V2(r) = 0 for r < r1, V2(r) = �(r) for r > r1, where
r1 is the cutoff radius.

As the short-range part of the potential we considered hard spheres [7]. The potential
that describes the impervious sphere of radius r1 is equal to +∞ at r < r1 . The condition of
the sphere impermeability into the sphere r < r1 may be expressed as a boundary condition
imposed on the wavefunction, ψ(k, r) = 0 at |�r| = r1. Considering the potential �(r) as
small, in first approximation we have for l = 0 the phase shift

δ01 = −kr1, (7)

where k is the wave number.
The modified effective-range theory provides the following scattering length for the

potential V (r) [5]:

L = L1 +
m

2πh̄2

∫
V2(r) d�r, (8)

where m is the mass of electron and L1 is the scattering length for the short-range potential
V1(r).

For arbitrary short-range potentials, the s-wave phase shift behaves for small k like
δ0 = −Lk. Using (7) we find that L1 = r1, and substituting it into (8) we get

L = r1 +
m

2πh̄2

∫
V2(r) d�r. (9)

Taking the pseudopotential (5) for the potential V2(r) we obtain

L = r1 − m

4πh̄2

∫ ∞

r1

e2α

r4
(
1 − 4−λ2

/
r2
D

) (e−Br(1 + Br) − e−Ar(1 + Ar))2 d�r. (10)

On the other hand the scattering length is equal to

L =
√

α/aBcot[
√

α/aBI/e2], (11)

where I is the ionization potential of the atom [8].
Inserting this relation, the final equation we need to solve to get the cutoff radius takes

the form

r1 − m

4πh̄2

∫ ∞

r1

e2α

r4
(
1 − 4−λ2

/
r2
D

) (e−Br(1 + Br) − e−Ar(1 + Ar))2 d�r

−
√

α/aBcot[
√

α/aBI/e2] = 0. (12)



4372 T S Ramazanov et al

.

Figure 1. Cutoff radius for the polarization interaction potential between charged particles and
hydrogen atom, � = 0.3.

Table 1. Cutoff radius for the polarization interaction potential between charged particles and
hydrogen atoms.

r1

N rs r1,0 � = 0.5 � = 1

1 2 2.3760 1.7222 1.5586
2 3 2.4756 1.9029 1.7025
3 4 2.5364 2.0168 1.7920
4 5 2.5775 2.0995 1.8535
5 6 2.6064 2.1552 1.8972
6 7 2.6292 2.1945 1.9180
7 8 2.6472 2.2200 1.9384
8 9 2.6613 2.2446 1.9512
9 10 2.6730 2.2650 1.9660

10 11 2.6829 2.2792 1.9635
11 12 2.6916 2.2752 1.9632
12 13 2.6988 2.2815 1.9630
13 14 2.7048 2.2848 1.9600
14 15 2.7105 2.2905 1.9608

4. Results

We performed calculations for hydrogen where α = 4.5 a3
B and I = 13.6 eV. We have

solved equation (12), considering for r > r1 the simple polarization interaction �0(r),
equation (1), as well as for the new expression �(r), equation (5), which was derived in
[2]. The corresponding solutions for the cutoff radius r1,0 and r1, respectively, as a function of
rs are given in table 1 in units of aB for different values � = 0.5 and � = 1. For two further
values of � = 0.3 and � = 0.8 the corresponding solutions are presented in figures 1 and 2.

It is seen that in the low-density limit rs → ∞, the calculated values for r1 approach a
limiting value which is larger than the Buckingham parameter r1,B = 1.2246 and also larger
than the value 1.5 used in [6].

The results for r1 are smaller than r1,0 and decrease with increasing �.
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Γ=0.8

Figure 2. Cutoff radius for the polarization interaction potential between charged particles and
hydrogen atom, � = 0.8.

5. Conclusions

The effective polarization interaction potential between charge and neutral particles is
considered. The cutoff radius for hydrogen atom has been obtained on the basis of a modified
effective-range theory for the pseudopotential model (5). Compared with the concept of the
excluded volume, our approach may be considered as a more systematic approach to the
interaction between electron and neutrals.
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